Locating a tree in a phylogenetic network
نویسندگان
چکیده
Phylogenetic trees and networks are leaf-labelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster Containment problem asks whether the given cluster is a cluster of some phylogenetic tree embedded in the network. Both problems are known to be NP-complete in general. In this article, we consider the restriction of these problems to several well-studied classes of phylogenetic networks. We show that Tree Containment is polynomial-time solvable for normal networks, for binary tree-child networks, and for level-k networks. On the other hand, we show that, even for tree-sibling, time-consistent, regular networks, both Tree Containment and Cluster Containment remain NP-complete.
منابع مشابه
Stability Implies Computational Tractability: Locating a Tree in a Stable Network is Easy
In this work, we answer an open problem in the study of phylogenetic networks. Phylogenetic trees are rooted binary trees in which all edges are directed away from the root, whereas phylogenetic networks are rooted acyclic digraphs. For the purpose of evolutionary model validation, biologists often want to know whether or not a phylogenetic tree is contained in a phylogenetic network. The tree ...
متن کاملLocating a Tree in a Phylogenetic Network in Quadratic Time
A fundamental problem in the study of phylogenetic networks is to determine whether or not a given phylogenetic network contains a given phylogenetic tree. We develop a quadratic-time algorithm for this problem for binary nearly-stable phylogenetic networks. We also show that the number of reticulations in a reticulation visible or nearly stable phylogenetic network is bounded from above by a f...
متن کاملLocating a Phylogenetic Tree in a Reticulation-Visible Network in Quadratic Time
In phylogenetics, phylogenetic trees are rooted binary trees, whereas phylogenetic networks are rooted arbitrary acyclic digraphs. Edges are directed away from the root and leaves are uniquely labeled with taxa in phylogenetic networks. For the purpose of validating evolutionary models, biologists check whether or not a phylogenetic tree is contained in a phylogenetic network on the same taxa. ...
متن کاملDirect Molecular Detection and Phylogenetic Tree Analysis of Gastrointestinal Protozoan Parasites (Giardia lamblia, Entamoeba histolytica, Cryptosporidium parvum) from Diarrhea Infection in Kut City of Iraq: A Short Communication
Background: The intestinal tract of human can be infected by protozoan parasites. In this short communication, the stool samples were collected from patients with diarrhea referred to Kut hospital, Iraq, and then the parasites (Giardia lamblia, Entamoeba histolytica, Cryptosporidium parvum) were considered for molecular identification. Methods: Stool samples were collected from 69 patients wit...
متن کاملQuantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species
Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Lett.
دوره 110 شماره
صفحات -
تاریخ انتشار 2010